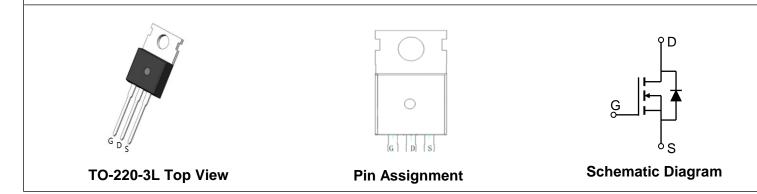
JJMICROELECTRONICS

70V, 171A, 3.5m Ω N-channel Power SGT MOSFET

JMSH0704PC

Features

- Excellent $\mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$ and Low Gate Charge
- 100% UIS TESTED
- 100% ΔVds TESTED
- Halogen-free; RoHS-compliant
- Pb-free plating


Applications

- Load Switch
- PWM Application
- Power Management

Product Summary

Parameters	Value	Unit
V _{DSS}	70	V
V _{GS(th)_Typ}	3.1	V
I _D (@V _{GS} =10V)	171	А
$R_{DS(ON)_Typ}(@V_GS\texttt{=}10V$	3.5	mΩ

Ordering Information

Device	Marking	MSL	Form	Package	Tube(pcs)	Per Carton (pcs)
JMSH0704PC	SH0704P	N/A	Tube	TO-220-3L	50	5000

Absolute Maximum Ratings (@ T_C = 25°C unless otherwise specified)

Symbol	Parameter		Value	Unit
V _{DS}	Drain-to-Source Voltag	е	70	V
V _{GS}	Gate-to-Source Voltage	e	±20	V
1	Continuous Drain Current	T _C = 25°C	171	А
Ι _D	Continuous Drain Current	T _C = 100°C	121	
I _{DM}	Pulsed Drain Current ^{(*}	1)	Refer to Fig.4	A
E _{AS}	Single Pulsed Avalanche En	ergy ⁽²⁾	389	mJ
P _D	Power Dissipation	T _C = 25°C	238	W
ГD	Power Dissipation	T _C = 100°C	95	vv
T _J , T _{STG}	Junction & Storage Temperatu	re Range	-55 to 150	C°

Thermal Characteristics

Symbol	Parameter	Мах	Unit	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽³⁾	71	°C/M	
R _{θJC}	Thermal Resistance, Junction to Case	0.5	°C/W	

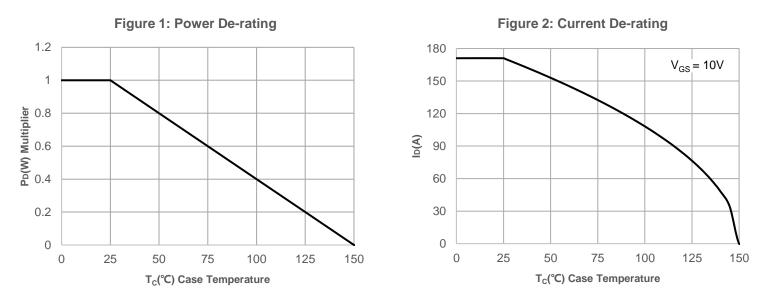
All product information is copyrighted and subject to legal disclaimers.

Electrical Characteristics ($T_J = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	70	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 56V, V_{GS} = 0V$	-	-	1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.1	3.1	4.0	V
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽⁴⁾	$V_{GS} = 10V, I_{D} = 20A$	-	3.5	4.6	mΩ
Dynam	ic Characteristics					
R_g	Gate Resistance	f = 1MHz	-	2.4	-	Ω
C _{iss}	Input Capacitance		-	3007	-	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 35V,$ f = 1MHz	-	1068	-	pF
C _{rss}	Reverse Transfer Capacitance		-	50	-	pF
Qg	Total Gate Charge		-	49	-	nC
Q _{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 35V, I_D = 20A$	-	15	-	nC
Q_{gd}	Gate Drain("Miller") Charge	$v_{\rm DS} = 33 v, v_{\rm D} = 20 A$	-	14	-	nC
Switchi	ing Characteristics					
t _{d(on)}	Turn-On DelayTime		-	15	-	ns
t _r	Turn-On Rise Time	V _{GS} = 10V, V _{DD} = 35V	_	32	_	ns
t _{d(off)}	Turn-Off DelayTime	I_{D} = 20A, R_{GEN} = 6.2 Ω	_	40	_	ns
t _f	Turn-Off Fall Time	-	-	32	-	ns
Body D	Node Characteristics					1
Is	Maximum Continuous Body Diode Forward	d Current	-	-	171	А
I _{SM}	Maximum Pulsed Body Diode Forward Cu	rrent	-	-	684	А
V_{SD}	Body Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 20A$	-		1.2	V
trr	Body Diode Reverse Recovery Time		-	48	-	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = 20A, di/dt = 100A/us	-	55	-	nC

Notes: 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

2. E_{AS} condition: Starting T_J =25C, V_{DD} =35V, V_G =10V, R_G =25ohm, L=3mH, I_{AS} =16.1A, V_{DD} =0V during time in avalanche.


3. $R_{\mbox{\tiny BJA}}$ is measured with the device mounted on a minimum recommended $\,$ pad layout..

4. Pulse Test: Pulse Width ${\leqslant}300\mu s,$ Duty Cycle ${\leqslant}0.5\%.$

Typical Performance Characteristics

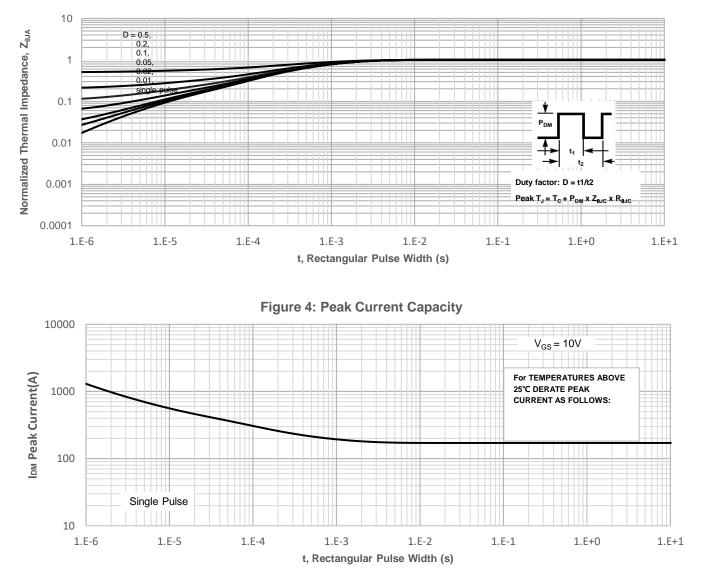


Figure 6: Typical Transfer Characteristics

150 20 V_{GS} = 10V,8V,7V $V_{DS} = 5V$ 120 16 $V_{GS} = 6.0V$ 90 12 ID(A) ID(A) T_J = 125°C T_J = -55°C $V_{GS} = 5.5V$ 8 60 30 4 T_J = 25°C 4.5V 0 0 2 3 5 6 2 3 1 4 0 1 4 5 Vgs(V) VDS(V) Figure 7: On-resistance vs. Drain Current **Figure 8: Body Diode Characteristics** 100 12.00 $V_{GS} = 0V$ 10.00 10 8.00 $R_{DS(ON)}(m\Omega)$ Is(A) 6.00 1 T_J = 125°C T_J = -55°C 4.00 0.1 $V_{GS} = 10V$ 2.00 Т_Ј = 25°С 0.00 0.01 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1.2 1 ID(A) Vsd(V) Figure 9: Gate Charge Characteristics **Figure 10: Capacitance Characteristics** 10000 10 $V_{DD} = 35V$ C_{iss} $I_{\rm D} = 20$ Å 8 1000 6 Coss Vgs(V) C(pF) 4 100 2 f = 1MHZC_{rss} $V_{GS} = 0V$ 0 10 0 10 20 30 40 50

Typical Performance Characteristics

Figure 5: Output Characteristics

All product information is copyrighted and subject to legal disclaimers.

Qg(nC)

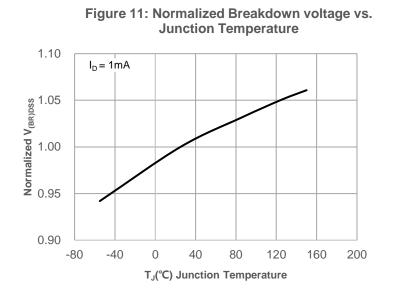
30

VDS(V)

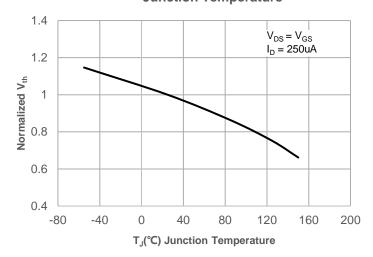
40

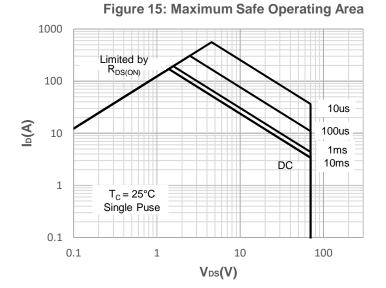
50

60


70

20


10


0

Typical Performance Characteristics

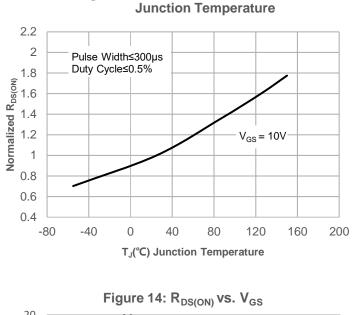
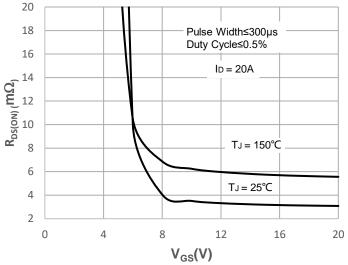



Figure 12: Normalized on Resistance vs.

Test Circuit

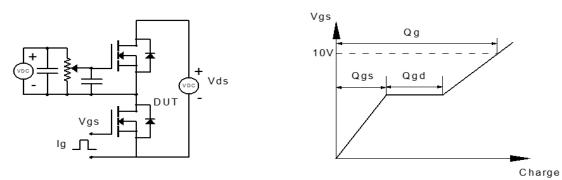


Figure 1: Gate Charge Test Circuit & Waveform

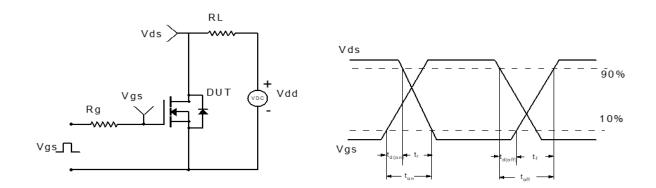


Figure 2: Resistive Switching Test Circuit & Waveform

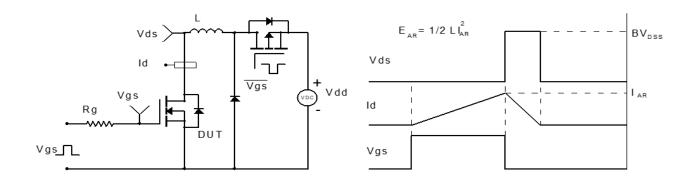


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

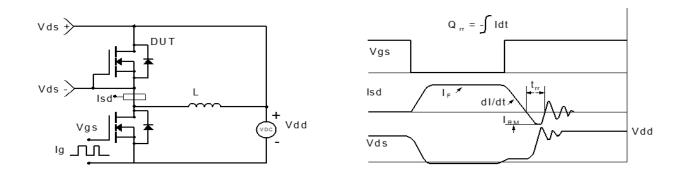
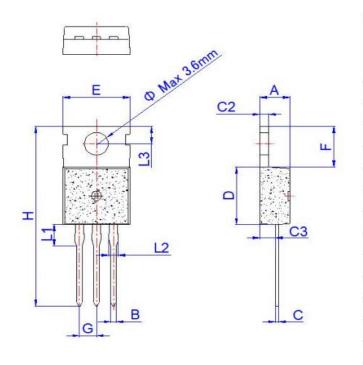



Figure 4: Diode Recovery Test Circuit & Waveform

Package Mechanical Data(TO-220-3L)

Ref.	Dimensions						
	Millimeters			Inches			
	Min.	Typ.	Max.	Min.	Typ.	Max.	
А	4.40		4.60	0.173		0.181	
В	0.70		0.90	0.028		0.035	
С	0.45		0.60	0.018		0.024	
C2	1.23		1.32	0.048		0.052	
C3	2.20		2.60	0.087		0.102	
D	8.90		9.90	0.350		0.390	
Е	9.90		10.3	0.390		0.406	
F	6.30		6.90	0.248		0.272	
G		2.54			0.1		
Н	28.0		29.8	1.102		1.173	
L1		3.39			0.133		
L2	1.14		1.70	0.045		0.067	
L3	2.65		2.95	0.104		0.116	
Φ		3.6			0.142		

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd.

