150V, 17A, 48mΩ N-channel Power SGT MOSFET

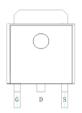
JMSH1552PK

Features

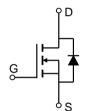
- Excellent R_{DS(ON)} and Low Gate Charge
- 100% UIS Tested
- 100% ΔVds Tested
- Halogen-free; RoHS-compliant

Applications

- Load Switch
- PWM Application
- Power Management


Product Summary

Parameters	Value	Unit
V _{DSS}	150	V
$V_{GS(th)_Typ}$	3.3	V
$I_{D}(@V_{GS}=10V)$	17	Α
$R_{DS(ON)_Typ}(@V_{GS}=10V$	48	mΩ



Pin Assignment

Schematic Diagram

Ordering Information

Device	Marking	MSL	Form	Package	Reel(pcs)	Per Carton (pcs)
JMSH1552PK-13	SH1552P	3	Tape&Reel	TO-252-3L	2500	25000

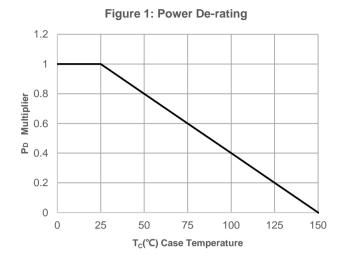
Absolute Maximum Ratings (@ T_C = 25°C unless otherwise specified)

	<u> </u>			
Symbol	Parameter		Value	Unit
V _{DS}	Drain-to-Source Voltage		150	V
V_{GS}	Gate-to-Source Voltage		±20	V
1	Continuous Drain Current	$T_C = 25^{\circ}C$	17	Λ
I _D	Continuous Drain Current	$T_C = 100$ °C	11	— A
I _{DM}	Pulsed Drain Current (1)	_	Refer to Fig.4	А
E _{AS}	Single Pulsed Avalanche Energ	y ⁽²⁾	60	mJ
P _D		$T_C = 25^{\circ}C$	40	w
L D	Power Dissipation	$T_C = 100$ °C	16	VV
T_{J} , T_{STG}	Junction & Storage Temperature F	Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Max	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽³⁾	42	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.1	C/VV

Electrical Characteristics (T_J = 25°C unless otherwise specified)


I _{DSS} Zero Gat	urce Breakdown Voltage e Voltage Drain Current	I _D = 250μA, V _{GS} = 0V	150	I		
I _{DSS} Zero Gat	e Voltage Drain Current		150			
		1/ 400)/ 1/ 0)/		-	-	V
1 0 1 0		$V_{DS} = 120V, V_{GS} = 0V$	-	-	1.0	μА
I _{GSS} Gate-Boo	ly Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Characteris	tics					
V _{GS(th)} Gate Thr	eshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.3	3.3	4.3	V
R _{DS(ON)} Static Dra	ain-Source ON-Resistance ⁽⁴⁾	$V_{GS} = 10V, I_D = 10A$	-	48	63	mΩ
Dynamic Chara	cteristics					
R _g Gate Res	sistance	f = 1MHz	-	1.1	-	Ω
C _{iss} Input Car	pacitance		538	753	1016	pF
C _{oss} Output C	apacitance	$V_{GS} = 0V$, $V_{DS} = 75V$, f = 1MHz	55	77	104	pF
C _{rss} Reverse	Transfer Capacitance	1 – 1101112	-	12	-	pF
Q _g Total Gat	e Charge		-	11	-	nC
Q _{gs} Gate Sou	ırce Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 75V, I_{D} = 10A$	-	5.0	-	nC
Q _{gd} Gate Dra	in("Miller") Charge	VDS = 75V, 1B = 10A	-	2.4	-	nC
Switching Cha	racteristics					
1	DelayTime		-	8	-	ns
· · · · · · · · · · · · · · · · · · ·	Rise Time	$V_{GS} = 10V, V_{DD} = 75V$	-	14	-	ns
t _{d(off)} Turn-Off	DelayTime	$I_D=10A$, $R_{GEN}=3\Omega$	-	11	-	ns
· · · · · · · · · · · · · · · · · · ·	Fall Time	1	-	2.8	-	ns
Body Diode Ch	aracteristics			<u>'</u>		
I _S Maximum	Continuous Body Diode Forward C	Current	-	-	17	Α
I _{SM} Maximum	Maximum Pulsed Body Diode Forward Current		-	-	67	Α
V _{SD} Body Dio	de Forward Voltage	$V_{GS} = 0V, I_{S} = 10A$	-		1.2	V
trr Body Dio	de Reverse Recovery Time	1 400 41/44 4000/	46	65	88	ns
Qrr Body Dio	de Reverse Recovery Charge	$I_F = 10A$, di/dt = 100A/us	-	142	-	nC

Notes:

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.
- $2.~E_{AS}~condition:~Starting~T_J=25C,~V_{DD}=75V,~V_{GS}=10V,~R_G=25ohm,~L=3mH,~I_{AS}=6.3A,~V_{DD}=0V~during~time~in~avalanche.$
- 3. R_{BJA} is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB.
- 4. Pulse Test: Pulse Width≤300μs, Duty Cycle≤0.5%.

Typical Performance Characteristics

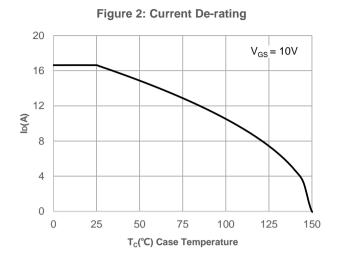
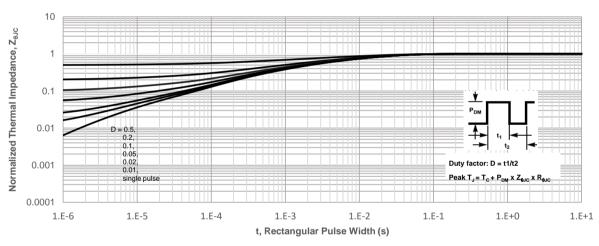
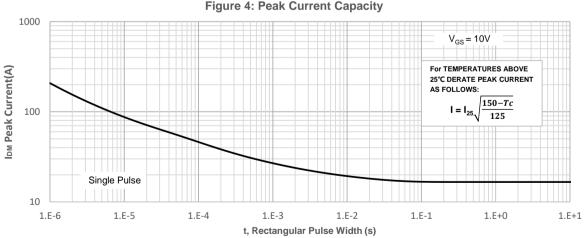




Figure 3: Normalized Maximum Transient Thermal Impedance

Figure 4: Peak Current Capacity

Typical Performance Characteristics

Figure 5: Output Characteristics

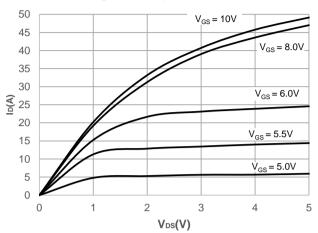


Figure 6: Typical Transfer Characteristics

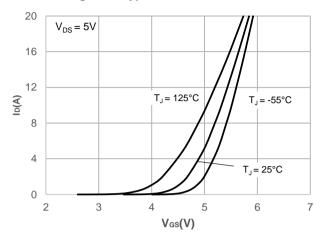


Figure 7: On-resistance vs. Drain Current

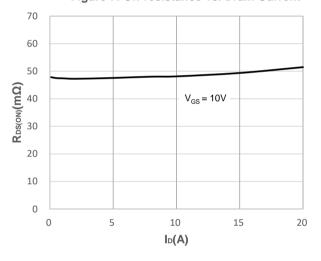
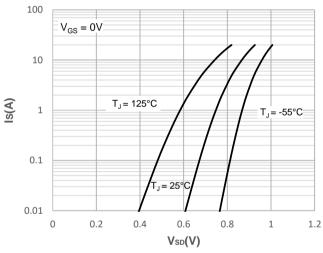



Figure 8: Body Diode Characteristics

Figure 9: Gate Charge Characteristics

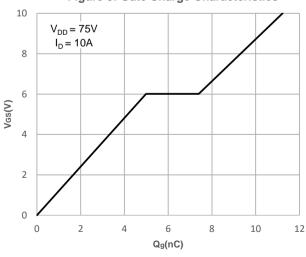
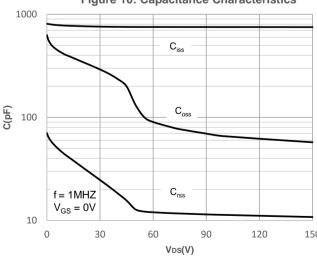



Figure 10: Capacitance Characteristics

Typical Performance Characteristics

Figure 11: Normalized Breakdown voltage vs. Junction Temperature

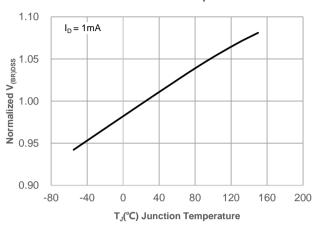


Figure 13: Normalized Threshold Voltage vs.
Junction Temperature

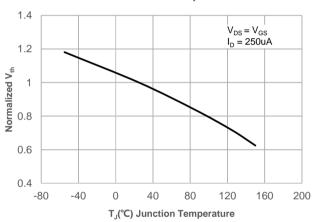


Figure 15: Maximum Safe Operating Area

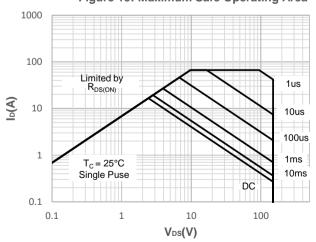
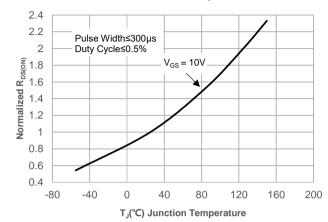
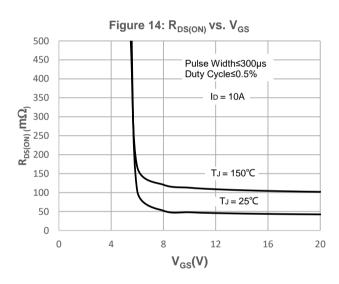




Figure 12: Normalized on Resistance vs.
Junction Temperature

Test Circuit

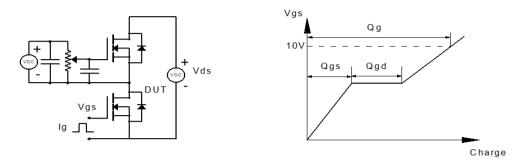


Figure 1: Gate Charge Test Circuit & Waveform

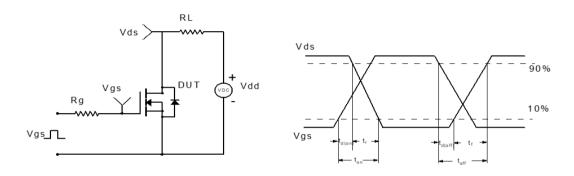


Figure 2: Resistive Switching Test Circuit & Waveform

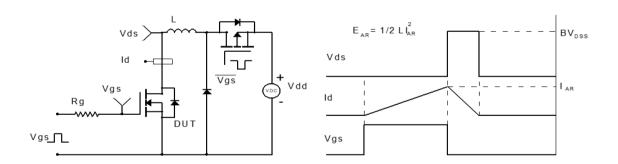


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

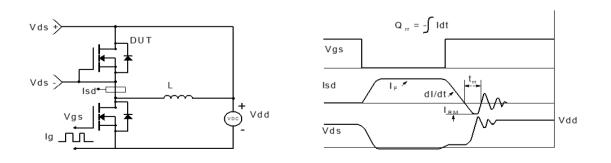
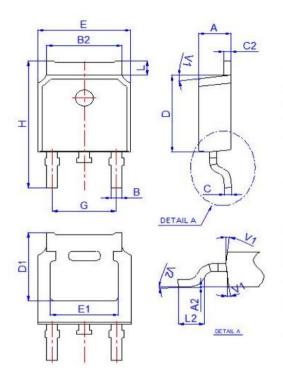
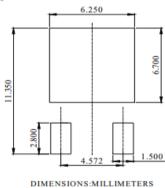



Figure 4: Diode Recovery Test Circuit & Waveform



Package Mechanical Data(TO-252-3L)

Ref.			Dime	ensions		
		Millimete	ers		Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
A	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF			0.209REF		
E	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°

Recommended Soldering Footprint

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd.