100V, 11A, 10.0mΩ N-channel Power SGT MOSFET

JMSL1010PP

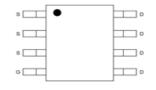
Features

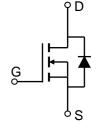
- $\bullet \quad \text{Excellent $R_{\text{DS(ON)}}$ and Low Gate Charge}$
- 100% UIS Tested
- 100% ΔVds Tested
- Halogen-free; RoHS-compliant
- Pb-free plating

Applications

- Load Switch
- PWM Application
- Power Management

Product Summary


Parameters	Value	Unit	
V_{DSS}	100	V	
$V_{GS(th)_Typ}$	1.6	V	
I _D (@V _{GS} =10V)	11	Α	
$R_{DS(ON)_Typ}(@V_{GS}=10V$	8.6	mΩ	
$R_{DS(ON)_Typ}(@V_{GS}=4.5V$	10.0	mΩ	



SOP-8

Pin Assignment

Schematic Diagram

Ordering Information

Device	Marking	MSL	Form	Package	Reel(pcs)	Per Carton (pcs)
JMSL1010PP	SL1010P	3	Tape&Reel	SOP-8	4000	48000

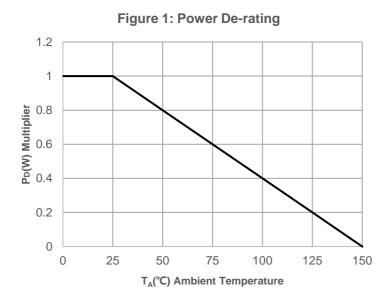
Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Symbol	Parameter		Value	Unit
V_{DS}	Drain-to-Source Voltage		100	V
V_{GS}	Gate-to-Source Voltage		±20	V
I-	Continuous Drain Current	$T_A = 25^{\circ}C$	11	A
I _D	Continuous Diain Current	$T_A = 100$ °C	7	
I _{DM}	Pulsed Drain Current (1)		Refer to Fig.4	А
E _{AS}	Single Pulsed Avalanche Energy (2)		89	mJ
P _D	POWAR Lilegination	$T_A = 25^{\circ}C$	2.8	W
		$T_A = 100$ °C	1.1	\ \v\
T_J,T_STG	Junction & Storage Temperature Range		-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Max	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽³⁾	60	°C/W
$R_{\theta,IA}$	Thermal Resistance, Junction to Ambient (4)	45	C/VV

Electrical Characteristics ($T_J = 25$ °C unless otherwise specified)


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics					
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80V, V_{GS} = 0V$	-	-	1.0	μА
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	racteristics	•				•
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1	1.6	2.1	V
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽⁵⁾	$V_{GS} = 10V, I_D = 20A$	-	8.6	11.2	mΩ
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽⁵⁾	$V_{GS} = 4.5V, I_D = 20A$	-	10.0	13.1	mΩ
Dynami	c Characteristics					
R_{g}	Gate Resistance	f = 1MHz	-	2	-	Ω
C_{iss}	Input Capacitance		1337	1872	2528	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 50V,$ $f = 1MHz$	522	731	987	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/2	16	22	30	pF
Q_g	Total Gate Charge	V 0. 45V	23	33	44	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 4.5V$ $V_{DS} = 50V, I_{D} = 20A$	-	5.9	-	nC
Q_{gd}	Gate Drain("Miller") Charge	= V _{DS} = 00V, I _D = 20/V	-	6.9	-	nC
Switchi	ng Characteristics				ı	ı
t _{d(on)}	Turn-On DelayTime	_	-	9.5	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 50V$	-	20	-	ns
$t_{d(off)}$	Turn-Off DelayTime	$I_{D} = 20A, R_{GEN} = 6.2\Omega$	-	40	-	ns
t _f	Turn-Off Fall Time		-	54	-	ns
Body D	iode Characteristics					
I _S	Maximum Continuous Body Diode Forward Current		-	-	11	Α
$I_{\rm SM}$	Maximum Pulsed Body Diode Forward Curi	rent	-	-	46	Α
V_{SD}	Body Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 20A$	-		1.2	V
trr	Body Diode Reverse Recovery Time	1 - 201 di/dt - 1001/::0	28	40	53	ns
Qrr	Body Diode Reverse Recovery Charge	$I_F = 20A$, di/dt = 100A/us	-	35	-	nC

Notes:

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.
- $2.\;E_{AS}\;condition:\;Starting\;T_{J}=25C,\;V_{DD}=50V,\;V_{G}=10V,\;R_{G}=25ohm,\;L=0.5mH,\;I_{AS}=18.9A,\;V_{DD}=0V\;during\;time\;in\;avalanche.$
- 3. $R_{\theta JA}$ is measured with the device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square pad layout.
- 4. $R_{\theta JA}$ is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB.

Typical Performance Characteristics

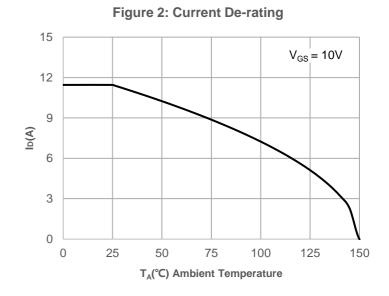
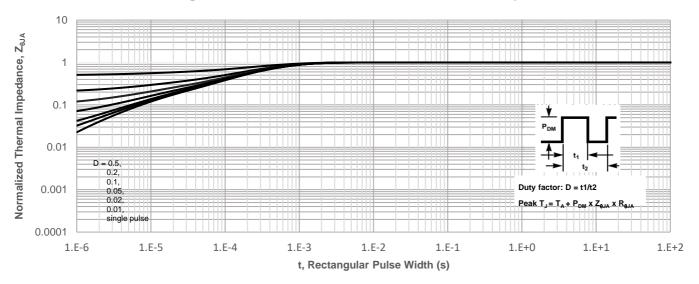
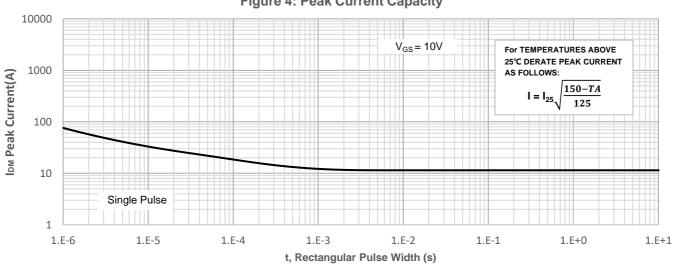




Figure 3: Normalized Maximum Transient Thermal Impedance

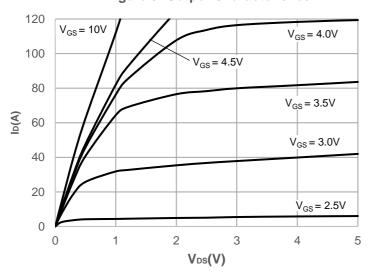


Figure 4: Peak Current Capacity

Typical Performance Characteristics

Figure 5: Output Characteristics

Figure 6: Typical Transfer Characteristics

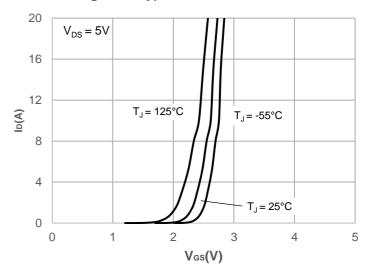
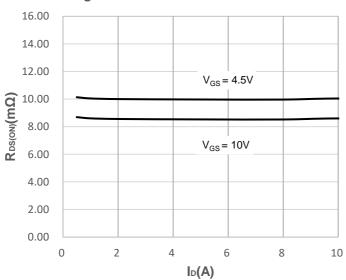
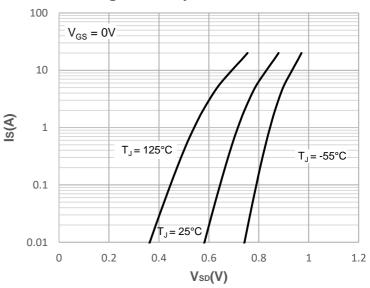




Figure 7: On-resistance vs. Drain Current

Figure 8: Body Diode Characteristics

Figure 9: Gate Charge Characteristics

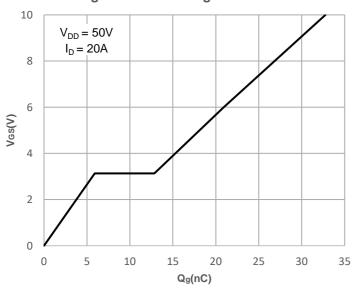
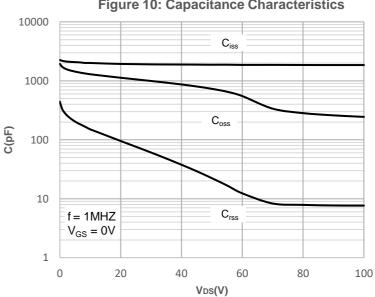



Figure 10: Capacitance Characteristics

Typical Performance Characteristics

Figure 11: Normalized Breakdown voltage vs. Junction Temperature

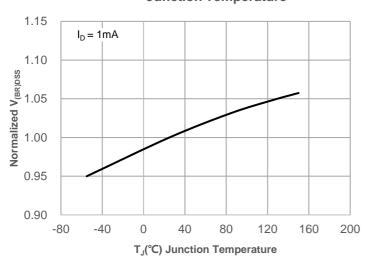


Figure 13: Normalized Threshold Voltage vs. Junction Temperature

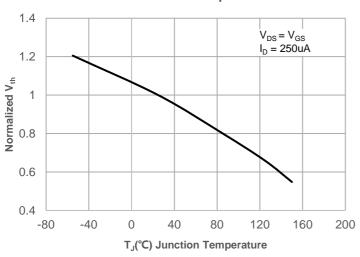


Figure 15: Maximum Safe Operating Area

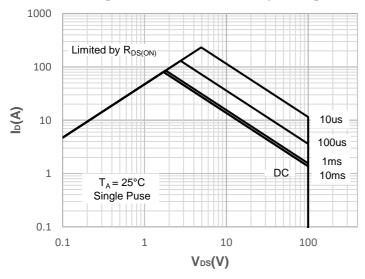


Figure 12: Normalized on Resistance vs. Junction Temperature

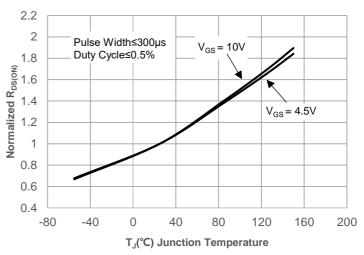
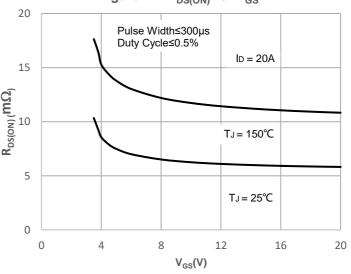



Figure 14: R_{DS(ON)} vs. V_{GS}

Test Circuit

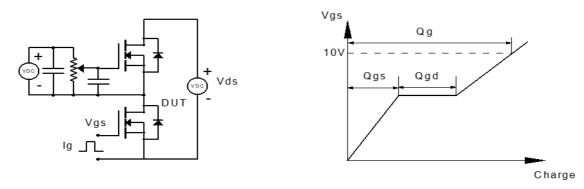


Figure 1: Gate Charge Test Circuit & Waveform

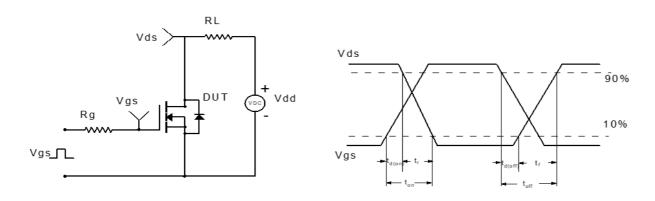


Figure 2: Resistive Switching Test Circuit & Waveform

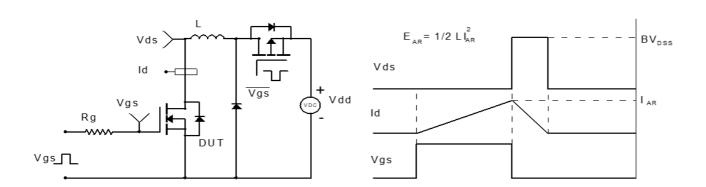


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

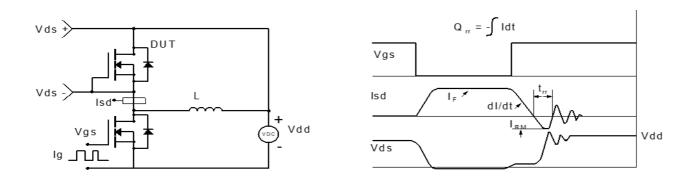
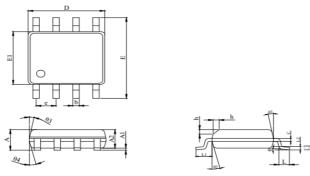
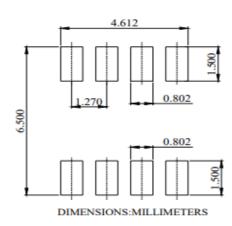



Figure 4: Diode Recovery Test Circuit & Waveform



Package Mechanical Data(SOP-8)

DIM	MILLIMETER			
DIM	MIN.	NOM.	MAX.	
A	1.35	1.50	1.65	
A1	0.05	0.10	0.15	
A2	1.35	1.40	1.50	
b	0.38		0.50	
С	0.17		0.25	
D	4.80	4.90	5.00	
Е	5.80	6.00	6.20	
El	3.80	3.90	4.00	
e	1.27(BSC)			
L	0.45	0.60	0.80	
L1	1.04 REF			
L2	0.25 BSC			
h	0.30	0.40	0.50	
θ	0°		8°	
θ1	10° 12°		14°	
θ_2	8°	10°	12°	
θ3	10°	12°	14°	
θ4	8°	10°	12°	

Recommended Footprint

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co., Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd.