

Solid DBC Modules

Rev.1.2 Oct.20 2023

DBC070CxxKQ-KGxC

Description

- 1) Components adopt vacuum welding to well control void and rated voltage up to 1600V.
- 2) A package of two inverse parallel SCRs.
- 3) Thyristor chips are welding on the ceramic copper clad laminate, products with high electricity ability, excellent heat dissipation ability.

Typical Application

Constant temperature system, CNC machine, remote control system, lighting control, power compensation and so on.

Parameter Test Condit		Symbol	Values		
	Test Conditions		12	16	Unit
Operating junction temperature range		TJ	-40~+125		°C
Repetitive peak off-state voltage	T J =25 ℃	Vdrm	1200	1600	V
Repetitive peak reverse voltage	T J =25 ℃	Vrrm	1200	1600	V
Non-repetitive peak off-state voltage	T J =25 ℃	Vdsm	1300	1700	V
Non-repetitive peak reverse voltage	T J=25 ℃	Vrsm	1300	1700	V
Average on-state current	Tc =80 ℃	I _{T(AV)}	7	0	А
RMS on-state current	Tc=80℃	I _{T(RMS)}	1 [,]	10	А
Non-repetitive surge peak on-state current	t⊵=10ms	Ітѕм	14	00	A
l ² t value for fusing	t _P =10ms	l ² t	98	00	A ² s
Critical rate of rise of on-state current	IG=2×IGT	di/dt	1:	50	A/µs

Absolute Maximum Ratings (Packaged into modules, unless otherwise specified, T_{CASE}=25°C)

Electrical Characteristics (Packaged into modules, unless otherwise specified, T_{CASE}=25°C)

Parameter	Test Conditions	Symbol	Values	Unit
Peak on-state voltage	Iтм=210A,t⊵=380µs	Vтм	≤1.8	V
	V _D =V _{DRM}			
Repetitive peak off-state current	Tc =25 ℃	I DRM1	≤50	μA
	Tc =125 ℃	IDRM2	≤10	mA

Solid DBC Modules

	VR=VRRM			
Repetitive peak reverse current	Tc=25℃	I _{RRM1}	≤50	μA
	Tc=125℃	I _{RRM2}	≤10	mA
Triggering gate current	$V_D=12V R_L=30\Omega$	lgт	10-80	mA
Latching current	Ig=1.2 Igт	L	≤200	mA
Holding current	IT=1A	Ін	≤150	mA
Triggering gate voltage	V_D =12V R _L =30 Ω	V _{GT}	≤2	V
Non triggering gate voltage	VD=VDRM TJ=125 ℃	V_{GD}	≥0.25	V
Critical rate of rise of voltage	V _D =2/3V _{DRM} TJ=125℃ Gate Open	dv/dt	≥1000	V/µs

Mechanical Characteristics

Chip size	9.8mm×9.8mm			
Module size	29.7mm×18.2mm			
Terminal height	19.2mm			
Solder composition and melting point of DBC	Solder composition: Pb92.5%Sn5%Ag2.5%; melting point>295℃.			
$A = B = C = 1 + 2 - \Phi D = 1 + E$	Dimensions Dimensions Millimeters Inches Min Typ Max Min Typ Max A 3.7 4.0 4.3 0.146 0.157 0.169			
	B 10.3 10.8 11.3 0.406 0.425 0.445 C 3.7 4.0 4.3 0.146 0.157 0.169 D 1.0 0.039 0.039 0.0419 0.0419			
$ \begin{array}{c} & & \\ & & $	F 0.3 0.5 0.7 0.012 0.020 0.028 G 19.2 0.756 H 19.2 0.756			
	I 0.4 0.9 1.4 0.016 0.035 0.055 J 3.9 4.4 4.9 0.154 0.173 0.193 K 6.0 0.236			
	L 0.2 0.244 M 29.4 29.7 30 1.157 1.169 1.181 N 17.9 18.2 18.5 0.705 0.717 0.728 O 1.6 2.1 2.6 0.063 0.083 0.102			
DBC070C/xxKQ-KGxC	P 25.1 25.6 26.1 0.988 1.008 1.028			
A2(K1) G1 G2 K2(A1) SCR2 SCR1 SCR1				

Solid DBC Modules

Soldering Process Requirements

a. Hand soldering iron welding		
Soldering temperature	≤260 °C	
Soldering time	≤10s	
b. Wave soldering (see figure at right)		
Preheating temperature	≤125 ℃	
Preheating time	≤100s	
Soldering temperature	≤260 °C	
Soldering time	≤10s	

Working Conditions

1) No severe mechanical shock as impact and drop off in the process of transportation, storage and working of product.

2) Storage conditions

Temperature: 5~40℃

Relative humidity: ≤45%

Storage time: 3 days for the open package; 3 months for the closed package

Ordering Information

Information furnished in this document is believed to be accurate and reliable. However, JieJie Semiconductor Co., Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it.

Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, JieJie complies with the agreement.

Products and information provided in this document have no infringement of patents. JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

This document is the 1.2nd version which is made in 20-Oct.-2023. This document supersedes and replaces all information previously supplied.

Semiconductor Co., Ltd. Printed All rights reserved.